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We test the applicability of the Gallavotti�Cohen fluctuation formula on a non-
equilibrium version of the periodic Ehrenfest wind-tree model. This is an one-
particle system whose dynamics is rather complex (e.g., it appears to be diffusive
at equilibrium), but its Lyapunov exponents are nonpositive. For small applied
field, the system exhibits a very long transient, during which the dynamics is
roughly chaotic, followed by asymptotic collapse on a periodic orbit. During the
transient, the dynamics is diffusive, and the fluctuations of the current are found
to be in agreement with the fluctuation formula, despite the lack of real hyper-
bolicity. These results also constitute an example which manifests the difference
between the fluctuation formula and the Evans�Searles identity.

KEY WORDS: Chaotic hypothesis; Gallavotti�Cohen fluctuation theorem;
Ehrenfest wind-tree model; Gaussian thermostat.

I. INTRODUCTION

In molecular dynamics simulations of fluids in nonequilibrium stationary
states, Evans, Cohen and Morriss(1) discovered a remarkable relation for
the fluctuations of the entropy production rate. This relation links in a
striking fashion the microscopic reversible dynamics of certain particle
systems in a stationary state, to the corresponding irreversible macroscopic
dynamics. Inspired by these findings, Gallavotti and Cohen proved(2) the
fluctuation relation for a wide class of systems, directly from the dynamics
of their constituent particles. Their proof was based on the following:
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Chaotic Hypothesis (CH). A reversible many-particle system in a
stationary state can be regarded as a transitive Anosov system for the pur-
pose of computing its macroscopic properties.

The ensuing result is now known as the Gallavotti�Cohen Fluctuation
Theorem (GCFT). Near equilibrium, the GCFT implies both the Onsager
and Einstein relations (3) and can therefore be interpreted as an extension of
them to far-from-equilibrium situations.

On the other hand, quoting from the review article:(4) ``... in concrete
cases not only it is not known whether the system is Anosov but, in fact, it
is usually clear that it is not ... Hence the test is necessary to check the CH
which says that the failure of the Anosov property should be irrelevant for
practical purposes.'' For ``practical purposes'' means that the calculation of
quantities of physical interest is not affected by the deviations of the
dynamics from the ideal case of an Anosov flow. Therefore, numerical or
real experiments are required to test the applicability of the CH, and to
identify its range of validity. Several papers have been devoted to this
purpose (see, e.g., refs. 5�9), while other papers have investigated the
possibility of observing fluctuation relations similar to that of the GCFT in
different contexts (see, e.g., refs. 10�13). These works show that the CH is
appropriate in the interpretation of: (a) the numerical results obtained for
two-dimensional systems of hard-core particles;(5, 8) (b) some experiment
on liquids undergoing Benard convection;(6) (c) numerical simulations of
two-dimensional turbulent fluids;(9) (d) the heat transport along chains of
anharmonic oscillators.(7) At the same time, the papers(12, 13) extend the
validity of the GCFT to stochastic dynamics, including rather general
Markov processes.

From all the mentioned examples, one can indeed conclude that��
according to the original intuition of ref. 2��the CH effectively works for a
definitely wider class of systems than that of topologically mixing Anosov
diffeomorphisms or flows. Of course, despite of the lack of uniform hyper-
bolicity (or smoothness, or both) all these time-reversal invariant systems
share the common property of being strongly chaotic, in the sense that they
have (possibly many) positive Lyapunov exponents.4

One question comes to the fore: given a time-reversible dynamical
system, what is the minimal degree of ``complexity'' required for its
microscopic dynamics to verify the fluctuation relation? Alternatively, one
may ask how ``weakly chaotic'' can be a system which verifies the CH.

These are rather natural questions in the framework of statistical
mechanics, where similar problems have traditionally been considered. For
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instance, the assumptions of ergodicity or of molecular chaos, are univer-
sally accepted for equilibrium systems, in spite of the well known fact that
such properties are not only exceedingly difficult to prove in practical
cases, but are violated in many of them. Nevertheless, these assumptions
lead to the correct physical predictions, and provide a mechanical founda-
tion to thermodynamics by linking the latter to the microscopic dynamics.
The reasons of their success are hidden in the interplay of extremely dif-
ferent time and length scales, and in the large numbers of particles which
constitute macroscopic systems (see, e.g., refs. 4, 14�16 for a discussion of
these topics, and ref. 17 for a recent work on the role of different time
scales in classical gases).

In the present paper we approach those issues by studying a modified
version of the Ehrenfest wind-tree model. It consists of a particle bouncing
elastically in an array of fixed polygonal scatterers. The original version
(randomly distributed and square obstacles) was introduced to study the
validity of Boltzmann equation and has been very recently reconsidered.(18)

The most remarkable properties for our purposes is the fact that flat bounda-
ries prevent chaotic behaviour as no defocussing of nearby trajectories occurs.
Nonetheless, the model has ``good'' statistical properties: the H-theorem
holds, and the moving particle gives rise to a true brownian motion.

What will be considered here is a nonequilibrium version of the model,
with an external field and a Gaussian thermostat (see, for the details, the
next section). The behavior of the system for nonvanishing (but small)
fields is essentially the following: asymptotically the dynamics is trivial,
namely the particle collapses onto a periodic orbit. Before this, however,
there is a long, quasi-stationary, transient state and our main result is that
the the GCFT holds during such a quasi-stationary state. One may therefore
speculate that, although chaoticity is in principle necessary to guarantee
the validity of the GCFT for all times, the latter may still retain its meaning
even in the absence of chaoticity, for trajectories of large although finite length.

Beyond this, our results also contribute, in our opinion, to clarify
questions which have been recently raised in the literature. First of all,
they provide an example in which the different origin of the GCFT and of
a previous result, known as the Evans�Searles Identity, (19) are evident
(cf. Section IV). Moreover, our findings give further support to the
claim(18) that observing diffusive behavior does not constitute by itself a
proof of the chaoticity of the microscopic dynamics(21) (cf. Section II).

II. THE MODIFIED EHRENFEST GAS

The periodic Ehrenfest gas consists of one moving particle of mass m,
which is elastically scattered by a set of rhomboidal fixed obstacles
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Fig. 1. The modified Ehrenfest gas. Along the paper, the side of the elementary cell is set to
1.291, while the semiaxis of the rhombus are chosen to be 1.1 and 0.7573 respectively.

arranged on a triangular lattice (see Fig. 1). Between any two collisions,
the particle moves freely along straight lines. The periodic structure of the
lattice allows us to follow the motion of the particle, looking at the periodic
image of its trajectory in just one hexagonal cell: the elementary cell evi-
denced in Fig. 1. As the sides of the scatterers are flat, the dynamics cannot
be chaotic: all of the four Lyapunov exponents *i vanish. Nevertheless, for
generic (i.e., irrational) values of the internal angles of the rhombus, the
system is expected to be ergodic, so that in particular a long enough trajec-
tory fills the available phase space (see ref. 22 for a review on the subject,
and ref. 23 for more recent results).

Similarly to the case of the nonequilibrium Lorentz gas,(24) we modify
this model by adding an external field of intensity =, and introduce a
Gaussian thermostat, which constraints the kinetic energy of the particle to
its initial value K. Let (x, y) be the position of the particle, and ( px , py) be
its momentum. We fix m=1, K=1�2 and let the field point in the positive
x-direction. The equations of motion for the free flights thus read

{ x* = px ;
y* = py ;

p* x=&:px+=
p* y=&:py

with :==px (1)

860 Lepri et al.



The effect of the external force is that the segments of trajectory between
subsequent collisions become curved, but because of the simple form of
Eqs. (1) they can be computed analytically (see the Appendix).

We performed numerical simulations of the model for small and
moderate fields, 10&4<=<1 by evolving Eqs. (1) from generic initial con-
ditions. The asymptotic state was always found to be a periodic orbit in the
range of field values which mostly concerns us, i.e., =�10&2.5 Accordingly,
upon switching on the field, two of the four Lyapunov exponents remain
zero (the exponents corresponding respectively to the conserved kinetic
energy, *1 , and to the direction of the flow, *2) while the other two are
numerically seen to approach a negative or vanishing value:

0=*1=*2�*3�*4 (2)

In practice, for small fields like those mostly considered here, the exponent
*3 is often so small that numerically we can hardly distinguish it from zero,
while *4 takes definitely negative values.

The mere existence of a trivial asymptotic motion for ={0 does not
however exclude quite complicated behaviour. Indeed, as dissipation is
weak for small =, a long transient is required to reach the periodic orbit.
During the transient the motion of the particle looks rather erratic, and
covers almost uniformly a large fraction of the phase space 0. Further-
more, the behaviour of the system on this time scale appears to be almost
stationary, and can be described in a statistical way.

To illustrate these facts, and visualize the dynamics, it is convenient
to introduce the usual ``bounce map'' of billiards. Precisely, to each collision
are assigned coordinates (s, cos �), where s is the distance of the collision
point from, say, the rightmost angle of the scatterer, measured along its
perimeter, and � is the angle between the outcoming momentum and the
side of the rhombus (positively oriented in the counterclockwise direction);
the billiard dynamics then defines a map

B: (sn , cos �n) [ (sn+1 , cos �n+1) (3)

where (sn , cos �n) denote the coordinates of the n th collision. For ==0, the
map is area preserving, so that ergodicity corresponds to uniform filling of
the square (or, better, of the cylinder) [0, L)_[&1, 1], L denoting the
overall length of the border.

As remarked in the Introduction, the asymptotic behavior of the
system is trivial, namely all trajectories eventually approach a periodic
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Fig. 2. The first 5000 iterates of the bounce map B for ==0.01 (left panel) starting from a
random initial condition, and the last 5000 out of a trajectory of 107 collisions (right panel).

orbit. However, before reaching the asymptotic regime, the system exhibits
a diffusive behaviour, up to a number of collisions nc , which is part of a
long transient (of length Tc collisions) during which the dynamics looks
nontrivial, as if the system were chaotic. The two regimes are illustrated in
Fig. 2, for case ==0.01, which has nc&3_104, and Tc&6_105. The left
and right panel of the figure report, respectively, the first and the last 5,000
iterates of the map, out of a trajectory of 107 collisions. Clearly, during the
transient, 5,000 iterates are sufficient to roughly cover the square, while
asymptotically one is left with few isolated points. A closer inspection, by
means of histograms of the density of points in the square (not reported
here) shows that decreasing = the iterates of the map during the transient
fill more and more uniformly the square. Compare, for instance, the phase
space distributions of Fig. 2 with those in Fig. 3.

A more quantitative characterization of the two dynamical regimes is
achieved by considering a large set of initial data [(x (i)

0 , y (i)
0 , p (i)

x0 , p (i)
y0)]N

i=1 ,
picked up at random with uniform distribution in the phase space, and
measuring the variance _2

n=( (xn&x0)2+( yn& y0)2) , where (xn , yn) is
the actual position of the particle at the n th collision, and ( } ) denotes
averaging over initial data. This corresponds to an ensemble average, for a
non-interacting gas of independently thermostatted particles. As is clear
from Fig. 4, one finds a crossover from diffusive (_2

ntn) to ballistic
(_2

ntn2) behaviour after a given number of collisions which we denote by nc .
By varying =, one finds that nc is inversely proportional to =2, see Fig. 5.
The ensuing divergence of nc with = � 0 is thus fully consistent with the
conclusions of ref. 18, according to which genuine diffusive behaviour is
found for the wind-tree model without an applied field. As already
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Fig. 3. Plot of 5000 successive iterates of the bounce map B for ==0.07 starting at different
times along the same trajectory. The initial distribution is more uniform than in the case of
==0.1. Moreover, the successive distributions show only small deviations from the initial one,
suggesting that the system is in a quasi-stationary state.

mentioned in the Introduction, this seems to contradict, or at least to
weaken, the claim (see ref. 21) that observing diffusive behaviour in a given
physical system is a good indicator that the corresponding molecular
dynamics is chaotic.

Similarly to the case of the Lorentz gas, the presence of the field
induces also here an average drift of the particle along the field direction,
so we can define the ``current'' in the system as

jt=
1

Nt
:
N

i=1
|

t

0
p (i)

x (s) ds (4)
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Fig. 4. The variance _2
n for ==0.075 and ensemble size N=300 shows a crossover from

diffusive to ballistic behaviour at nrnc .

i.e., as the ensemble average of the time average of the component of the
particle momentum along the field direction. All the cases we considered
displayed a well-defined positive current jt>0, both for moderately long t
(in the quasi-stationary transient state) and for very long t (in the
asymptotic state).

III. THE FLUCTUATION RELATION

The discussion of the previous section can be summarized by saying
that, for generic initial conditions, the particle spends a considerably long

Fig. 5. The crossover time nc as a function of =. The dashed line corresponds to nc=2.15=&2.
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Fig. 6. Running averages of the current for ==0.07. Each average is computed starting at
different times along the same trajectory. The convergence to a common value indicates that
the state of the system is practically stationary over a time which is several orders of
magnitude longer than the length of the trajectory segments needed to test the validity of
Eq. (5).

time exploring practically all the available phase space, until it eventually
reaches the periodic orbit. We observed numerically that the time duration
of the transient Tc ranges between 6_105 and several million collisions for
fields of order 10&3�10&2. During this time, the state of the system looks
practically stationary. For instance, the current averaged over 103�104

collisions is practically independent of the time Tb at which the averaging
begins, as long as Tb<Tc (see Fig. 6). The same information can be
obtained from the phase space distribution, which looks almost the same
at all times within Tc , as can be seen in Fig. 3. So, if we restrict the atten-
tion to time scales shorter than Tc , it makes sense to study the statistical
properties of the fluctuations of a given observable, and compare the result
with the prediction of the GCFT. To this purpose, we first need to adapt
the latter to the present case. Let T>0, M # N and take {=T�M. In our
framework, the GCFT may be replaced by the following conjecture, based
on our numerical observations:

Conjecture. Consider a periodic billiard with flat scatterers, which is
ergodic at equilibrium. Let the particles be subject to external driving and
to a Gaussian thermostat. Then, there is a critical time Tc such that for
T<Tc , and for sufficiently large M and {, the following holds:

1
{(px) T

ln
?{(z)

?{(&z)
==z+o(=z) (5)

865Gallavotti�Cohen Fluctuation Theorem for Nonchaotic Model



File: 822J 252410 . By:XX . Date:26:05:00 . Time:09:18 LOP8M. V8.B. Page 01:01
Codes: 2412 Signs: 1839 . Length: 44 pic 2 pts, 186 mm

where ( } ){ is a time average and ?{ denotes the probability distribution of
the quantity

z=
(px){

(px) T
(6)

computed by subdividing a simulation of length T in segments of length {,
and by recording the observed frequency of occurrence of the values z.

In the original formulation of ref. 2, the fluctuation relation holds in
the limit of large T and {, for fixed =. Instead Eq. (5) makes sense only for
T and { finite. Alternatively, the limits of large times and of small = should
be taken simultaneously, with T within the transient Tc . The time Tc is also
expected to diverge with = � 0, because nc<Tc . The correction term o(=z)
accounts for the observation that reducing = at fixed z, or reducing z at
fixed =, the left hand side of Eq. (5) is well approximated by =z itself.

Under the above limitations, we checked the validity of Eq. (5) for
several values =. In the numerical computations, it would be convenient to
consider small fields as they correspond to larger Tc and entail better
statistics for z on each run. On the other hand, the accuracy of the simula-
tions worsens with decreasing field, as usual in nonequilibrium molecular
dynamics (see, e.g., ref. 16), thus a compromise between these contrasting
needs is required. The chose = values range between 10&3 and 10&2 and are
given in the figures along with the values of {. Incidentally, note that these
values suffice to go well beyond the linear regime of irreversible thermo-
dynamics, which for models of this class can be estimated to correspond to
fields of 10&6 or smaller (cf. ref. 16, point 2 of Discussion).

Fig. 7. Test of the fluctuation relation for ==0.005 (left) and ==0.01 (right): the solid line
is the theoretical prediction (5). Large z-values are more affected by statistical errors but its
range of validity of its is larger for smaller field.
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Fig. 8. The distribution ?{(z) of the fluctuation of the current for ==0.005 (left) and ==0.01
(right).

As usually done for billiards, (5) we decided to cut our long trajectories
in segments of a fixed number n{ of collisions, rather than of a given dura-
tion. Hence, the values of { reported in the figures are to be understood as
the average times necessary to undergo n{ subsequent collisions with the
scatterers. At variance with ref. 5, but similarly to refs. 8, 9, we did not
decorrelate the successive trajectory segments in order to have better
statistics. A further average of the histograms over an ensemble of Nt105

independent trajectories was also performed.
Some typical results, reported in Fig. 7, seem to vindicate the above

conjecture. In particular, the agreement with Eq. (5) improves with increas-
ing {, and the range of validity of the formula gets wider by diminishing the

Table I. Finite-Time Lyapunov Exponent *3(n) for
Different Number of Collisions na

n ==0.05 ==0.01 ==0.005

4 3.59 10&1 3.62 10&1 3.60 10&1

9 2.07 10&1 2.13 10&1 2.14 10&1

19 1.22 10&1 1.19 10&1 1.22 10&1

39 8.55 10&2 6.96 10&2 6.87 10&2

79 6.66 10&2 4.26 10&2 3.96 10&2

159 5.85 10&2 2.99 10&2 2.39 10&2

319 4.19 10&2 2.44 10&2 1.67 10&2

639 2.16 10&2 2.01 10&2 1.40 10&2

a The ensemble size is N=105. The trend for large ensembles is
similar. Only for n-nc , *3(n) will change sign.
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field. Fig. 8 illustrates the non-gaussian nature of the probability distribu-
tion for the same values of the parameters. Indeed, ?{(z) appears to be
slightly asymmetric and to have approximately exponential tails.

The conclusion we draw is that, in spite of the absence of any source
of chaoticity, the complex dynamics of our system in the transient states is
almost indistinguishable from genuine chaotic dynamics. For instance, let
us consider the finite-time Lyapunov exponent *3(n), for n<<nc , which
measures the average separation of close initial points after a number of
collisions n. The results reported in Table I show that this exponent is
positive for a certain amount of time, moreover we found that it remains
so (even if smaller and smaller) for long times.

IV. CONCLUDING REMARKS

Our analysis indicates that the consequences of the CH are valid
(albeit in a restricted sense) for non-chaotic and reversible particle systems,
provided that their trajectories are sufficiently ``unpredictable'' for relatively
long times. In this respect, the difference between real chaotic systems and
our wind-tree seems only to consist of the possibility to extend to infinite
times the validity of the CH and of its consequences. Similar limitations on
observation times are usual in statistical mechanics.

Admittedly, the example discussed here is not completely generic at least
for two reasons. First, it is fairly artificial to start with a system that is ergodic
at equilibrium without being actually chaotic (even in a weak sense). Second,
although other models similar to ours can be conceived, in general one
expects the asymptotic state to be chaotic, even in the presence of external
fields. Nevertheless, our model is important, in our opinion, from a theoreti-
cal point of view, because it provides a limiting case in which the consequen-
ces of the CH can still be applied. Accordingly, this also suggests that the CH
can be successfully applied to systems with slow decay of correlations or long-
time tails, strongly deviating from the true Anosov systems.

As a final remark, we observe that our results are of some interest in
the present debate on the relation between the GCFT, and one identity
previously obtained by Evans and Searles (ESI).(19, 20) The ESI concerns
any time reversible dynamical systems, like ours, and the Liouville measure
+L on the phase space 0 of such systems. In particular, let Ep/0 be the
subset of initial conditions of trajectories along which the phase space con-
traction is e&p(:) T after a time T>0, where ( } ) represents a (stationary
state) average. Then, the ESI can be expressed as:(20)

+L(Ep)
+L(E&p)

=e p(:) T (7)
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This equation is formally similar to the fluctuation relation of the GCFT,
especially if one takes very large T, so that the computed quantities charac-
terize the stationary state of the system. However, the GCFT and the ESI
cannot possibly refer to the same physical quantities. Indeed, if T is large
in the modified Ehrenfest gas, there are no fluctuations of the phase space
contraction at all. Accordingly, as observed above, the fluctuation relation
does not apply. On the contrary, the ESI (7) retains its meaning, showing
that the quantity +L on the left hand side of the equation cannot be inter-
preted as probability of fluctuations. The ESI, instead, correctly gives a
relation for the probabilities of ``trajectory histories'' with opposite phase
space contractions.

APPENDIX: LYAPUNOV EXPONENTS

In this appendix we give some expressions for the (finite time)
Lyapunov exponents of the thermostatted Ehrenfest gas. Let us consider
the coordinates x, y, and %, where the latter is the angle formed by the
momentum vector ( px , py) with the x axis. Because the kinetic energy of
our system is constant, K=1�2, the coordinates (x, y, %) suffice to describe
the dynamics which, going from one collision to the next, can be split in
two stages:

%0 %$0 %1

\x0+ w�F \x$0+ w�C \x1+ (8)

y0 y$0 y1

Here F, the free flight between two successive obstacles, is explicitly given
by (see Eqs. (3) and (4) in ref. 24)

tan
%$0
2

=tan
%0

2
e&={(%0 , x0 , y0) (9)

x$0=x0&
1
=

ln
sin %$0
sin %0

(10)

y$0=y0&
%$0&%0

=
(11)

where {, the flight time, depends on the initial point (%0 , x0 , y0). In turn,
the map C represents the collision with the scatterer, and is given by
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%1 =f (%$0(%0 , x0 , t0))=&%$0\2; (12)

x1=x$0 (13)

y1=y$0 (14)

where %$0 is the incidence angle, (x1 , y1) is the collision point, and ; is the
internal angle of the rombus. The \ sign depends on the side on which the
bounce occours, hence C is piecewise linear in %$0 .

In order to compute the Lyapunov exponents, we need to evaluate
the jacobian matrix J=JC JF , product of a free-flight JF and of a collision
part JC , where

�%$0
�%0

�%$0
�x0

�%$0
�y0 &1 0 0

JF=\�x$0
�%0

�x$0
�x0

�x$0
�y0+ , and JC=\ 0 1 0+ (15)

�y$0
�%0

�y$0
�x0

�y$0
�y0

0 0 1

Taking the product of matrices like J at each collision, along an entire tra-
jectory, the Lyapunov exponents *2 , *3 , *4 of Eq. (2) can be computed.
The remaining one (corresponding to the conserved kinetic energy) is zero.

Now, consider the relation between the phase space contraction rate
and the particle momentum:(3, 16)

div(p* , q* )=&:=&=px (16)

which holds at all times. This relation implies that the average of div(p* , q* )
(whose asymptotic limit is the sum of the Lyapunov exponents) has sign
opposite to that of the current and, for both the finite time and the
asymptotic Lyapunov exponents, we obtain:

2x(n)
tn

=&
*1(n)+*2(n)+*3(n)+*4(n)

=
(17)

Here 2x(n) is the distance traveled in real space in the time tn correspond-
ing to n collisions, and *i (n) is the i th finite time exponent. This result is
exact, and does not require any condition on the value of the field. It
follows that, because a positive current is observed in the stationary state
as well as in the transient, the sum of the Lyapunov exponents is always
negative. Therefore, one exponent at least is negative. Moreover, in the
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infinite time limit, we know that two exponents vanish, leaving some uncer-
tainty only on the value of the remaining one. Numerically, we found hat
the asymptotic value of this Lyapunov exponent is either negative or very
close to zero.
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